Online design tool adds power train discrete device power loss and efficiency analysis modules
Fairchild semiconductor has enhanced the company’s Power Supply WebDesigner (PSW) online design and simulation tool that provides complete designs in under a minute – to include power train discrete (MOSFET/IGBT/Rectifier) device power loss and efficiency analysis tools.

Intended for 100 W to 3 kW designs as a function of input and output conditions, the new modules provide designers power factor correction (PFC), phase-shifted full-bridge plus secondary side synchronous rectification (PSFB+SR) power train discrete device analysis, and the matrix of device combinations associated with these topologies.

From user-specified electrical and mechanical specifications, the new modules provide an optimum combination of power discrete semiconductors, transformer and inductor design values, as well as a bill of material (BOM). It also provides a dashboard view of the converter’s system and device power loss, device junction temperature, and further component fine-tuning over the operating conditions.

As with other PSW modules, designers using the tools can accept default recommended values, or spend time optimizing the important details to their unique
design needs. They can get quick, accurate estimates on design performance, and refine design choices as they go. The tools also allow them to spend the time to perform detailed simulation analysis and learn the insights of how their design and its hardware prototype will work with higher degree of confidence.

  • An optimized tool that works with the most popular PSFB+SR control ICs on the market (UCC28950 and UCC3895).
  • A complete power train discrete device design including selection of the optimum Fairchild MOSFET, IGBT, and rectifier. Users can select the optimum bridge rectifier, MOSFET/IGBT, and power rectifier part numbers (PNs), or let the tools recommend from user-specified system design inputs.
  • An optimized power train discrete design targeting power supplies that need PFC and/or PSFB+SR.
  • Power train discrete component losses correlated against hardware for highest level of relative accuracy unmatched by equation-based calculation alone.
  • The ability to compare different sets of power train discrete combinations within one analysis. The module